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We have investigated the random walk of particles in the frame of a conventional master equation for
directed random walks. The transfer rates are supposed to be random variables and we incorporate the
possibility of correlations. We assume that the chain consists of successive segments of random lengths.
Within a given segment, the transfer rates are equal to a single random variable. The transfer rates be-
longing to two different segments are supposed to be independent and distributed according to the same
probability law. We have calculated the time-asymptotic behavior of the mean coordinate of the parti-
cle. The resulting character of the motion emerges from the interplay between two basic features: the
probability of having a small value of the transfer rate and the probability of having long segments. If
the first moment of the segment-length distribution diverges, the asymptotic regime undergoes radical

changes as compared to the noncorrelated model.

PACS number(s): 05.40.+j, 05.60.+w, 71.55.—i

I. INTRODUCTION

The study of dynamical features of diffusion or conduc-
tivity in random environments has been initiated in early
1980’s [1] and intensively pursued during the whole last
decade. At present, there exist several review papers on
the subject [2-4] and we refer to them for a detailed list
of references.

The problem is usually formulated either in a discrete
form, i.e., by means of the Pauli master equation (PME)
[5] assuming the transfer rates to be random variables, or
in a continuous formulation, i.e., using the Fokker-
Planck equations [6,7] and assuming the drift function to
be a stochastic function in space. The transport proper-
ties within the medium are then related to an average
over the random parameters in the equation of motion.
The averaging process can introduce new features of the
resulting dynamics in the time-asymptotic region, the so-
called dynamical phases [4].

Most of the above treatments share the common attri-
bute of ignoring correlations in the probabilistic descrip-
tion of the disordered medium. Thus the transfer rates in
the PME are usually taken as independent random vari-
ables and the drift function in the Fokker-Planck equa-
tion is supposed to be a white-noise process. Neverthe-
less, as already pointed out in [8], a more realistic
description should take into account the possibility of
spatial correlations, i.e., the persistence of the ordered
elements in a partially randomized medium. Stochasti-
cally, this feature can be incorporated by assuming spa-
tial correlations of the parameters which define the local
transport properties.

Unfortunately, the problems with correlations are con-
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siderably more involved than their noncorrelated coun-
terparts. In the continuous case, one is faced with a sto-
chastic differential equation with a general ‘“colored”
noise [9]. In the discrete problem, one cannot use the
fairly well-developed theory valid for independent, identi-
cally distributed random variables [4,10].

Considering the present status of the problems with
correlations, we want to focus on the simplest random-
walk problem, namely the directed random walk (pure
birth process) [6,11-14]. In a first study we used a
Fokker-Planck equation as an auxiliary tool for the
preparation of a (discrete-“‘time”, continuous-state) Mar-
kov chain of correlated random variables with a
prescribed stationary distribution [15]. The Markov
character of the process enables a simple complete proba-
bilistic description of the system. Yet in this first study
the correlations decrease exponentially with the distance.
Therefore, in the present work, the emphasis will be put
on the consequences of long-range correlations.

The exact solution of the directed “random-random”-
walk problem with noncorrelated transfer rates is well
understood. The details can be found in Refs. [16,17] (cf.
also the papers [18-20] on the problem of general
random-random walk) and Ref. [21]. In connection with
the existence of the spatial correlations, two basic ques-
tions are abetted. First, is the asymptotic regime stable
against correlations between the transfer rates? Second,
even if the functional form of the asymptotic regime does
persist, are the time-scale and/or other parameters of the
asymptotic dynamics modified? The authors of Ref. [4]
have expressed a conjecture (based on a renormalization-
group analysis), namely, that the dynamical phases per-
sist as far as the correlations decrease sufficiently rapidly
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and are integrable. Another specific model with correlat-
ed spatial disorder has been investigated in Ref. [2]. Here
the authors analyze a random resistor network with a set
of N resistors in series, where the resistance R j of resistor
Jj changes in a correlated fashion: R; ;=(1 +6)TjRj with
the random variable 7;==+1. The interplay between the
local disorder and the fractal-induced spatial disorder has
been examined in Ref. [22]. Otherwise, up to our
knowledge, the problem of the spatially correlated disor-
der has not been treated in the literature.

II. DIRECTED RANDOM-RANDOM WALK

In the problem of directed random walk [16,21], the
particle is supposed to move along a semi-infinite linear
chain only in the direction of increasing coordinate. The
motion is described by the Pauli master equation

%po(t)= —Wopo(t),

%pn(t)=—Wnp,,(t)+ W, _pi(), n=1,
where W, denotes the transfer rates between the sites of
the semi-infinite chain and p,(¢) are the site-occupation
probabilities. In the so-called random-random walk, the
transfer rates are supposed to form a system { W, }°_, of
identically distributed, non-negative random variables
with the first-order density p(W). However, generally,
they are not independent, their correlations being de-
scribed, e.g., by higher-order joint densities.

The system (1) with the initial condition p,(0)=3§,,
can be easily solved [16]:

! Py(2=— [ —
1w, PO U oy

Py(z)= n>1,

(2)

where P,(z) is the Laplace transform of the occupation
probability p,(z). The transport properties then emerge
after carrying out the averaging procedure. As for the
properties which are linear in the occupation probabili-
ties, we need the averaged functions

n—1 1,4
L k > (3)

G =

n(2) <z+W,, I S5,

Here and below, the brackets (. .. ) denote the averaging

over all probabilistic features of the system { W, }—,.
The disorder-averaged motion of the particle is de-

scribed by the mean coordinate

(XD)=S nip ()= 3 ng,(1) . @
n=0

n=0

We are primarily interested in the time-asymptotic be-
havior of the function {x(#)). Taking the Laplace trans-
form of (x (7)), one finds [16]
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(x,(2))= i nG,,(z)=l i < fI SO >
= z Zo\p=0ztTW,
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n=0

As mentioned above, in the limit case of independent,
identically distributed random variables the complete
description is furnished by the density p(W). We shall
take it in the form [16]

p—1
for W< W,

o |\ W
p( W)= Wc Wc
0 for W>WwW,,

where W, is a sharp cutoff and p is a positive parameter.
The expectation value of Wis W_u/(u+1) and its vari-
ance reads W2u/[(u+2)(u+1)?]. The limit u— o can
be regarded as the transition to the ordered (nonrandom)
situation, all transfer rates being then equal to W,. We
now proceed to the evaluation of the expression (5). Each
term E,(z) is clearly seen to factorize into the product of
n +1 functions S,(z,u), where we have adopted the nota-
tion

W \_ % v
SI(Z’H)—<2+W> fo aW oW

o 1 xﬂ
—“fodxx—FZ ’ @

with Z =z/W,. The expression (5) is a geometrical
series, which yields

_(w) 1=8(z,u+1)

_1 Sizp)
<x1(Z)>— 1—S,(zp)

z 1—S,(z,n) 22

(8)

Actually (x,(z)) is the same quantity as in Ref. [16]
[part (a), formula (10)], but expressed in a different
manner for a further use. The last transcription in (8) al-
ready anticipates the general form (21) to be achieved in
the model with correlations.

Let us finally recall the behavior for {x (z)) as deduced
from (8) by the Tauberian theorem [12] [see also Egs.
(13)-(17)]

sin(7u) T fi <1
mul(p+1) or#

(x(1)) = for u=1 9)

InT
E————LT for u>1,
u

with T =W,t. A standard regime with constant nonzero
asymptotic velocity v, =lim,_, ,v(¢) occurs for u>1:
v =W, (u—1)/u. On the other hand, if 0<u <1, the
coordinate increases slower than ¢ and the asymptotic ve-
locity is zero, v, =0. The decisive role is played here by
the high weight of the small transfer rates, i.e., by the
high probability of quasibroken links [23-25].

Let us now investigate the opposite limit of completely
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correlated transfer rates. This amounts to assuming that
all transfer rates W, are equal to a single random vari-

able W,=W,=...=W. Performing the average over an
ensemble of ordered chains yields
— Wen
H))=(W)it= t. 10
(x(0)=(W) P (10)

Note also that the Laplace transform {x,(z)) which cor-
responds to this result could have been obtained from (5).
In the present case the functions Z,(z) are equal to
S, +1(z,u), where

k k
w We w
Suta=( z+W] )=J, awew "TW
k+,u,
—,u,f +Z)k . (11)

By interchanging the summation over n and the integra-
tion over W in the formula (5) we get

W

1 % ®
(xl(z))=;f0 dWp(W) 'S
n=1

which is the same result as (10).

The functions S;(z,u) will be extensively used in the
sequel and for further use we now give their small-z ex-
pansions. The integration required in (11) [26,27] gives
for a noninteger u >0

T C(p+k)
sin(mp) T'(u)T(k)
© _ n n—1
—us 28 gy, ay

] —_—
n=1 N NTH o

Silz,u)=1—2Z*#

where I'(x) is the Euler gamma function. If u is equal to
an integer, u=m =1,2, ..., we find the formulas

1 k+m—1
S (z,m)= —Z S, (z,m —1),
«(z,m) Z+1)F m—1 r(z,m —1)
m=23,...,
(14)
1
1N=1— + =
S, (z,1)=1—kZ In Z]
k n k n—1 i
(—1) V4
+ —_
n§2 (n—=1) (n}) <2 | Z+1 (15)

Therefore the small-z behavior of the functions S; (z,u) is
T Cutk)  ku

~1—2Z*
Slam == G e Twr ) 21 16
S, (z,m)~1—kZ In i]aml—zk—“Lm—_—l—u—aml),
z —1
(17

for noninteger 1 >0, and for u=m =1,2,..., respec-
tively.
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III. SIMPLE MODEL FOR CORRELATIONS

We are now ready to introduce the basic assumptions
of our model. Considering the sequence of random vari-
ables { W, }°—o, let us denote as f},k =1 the probability
that the random variable W, is independent of the ran-
dom variable W, _,, this case of independence being the
first to occur in the series Wy, W, ..., W,. Otherwise
stated, the variables preceding this interruption are total-
ly correlated in the sense specified above:
Wo=W,=...=W,_,. if any such group of identical
variables occurs anywhere in the chain, we shall refer to
this faction as to a segment (see Fig. 1). Hence, within a
given segment, the transfer rates are ‘“‘ordered,” their
common value being chosen at random in accordance
with the density p(W). The length of a segment is equal
to an integer k with a probability f, and the lengths of
different segments are statistically independent. If the
first interruption in the chain occurs between the vari-
ables W, _, and W, (the probability of this event is just
f%), then the new sequence { W, }°_, is assumed to con-
stitute an exact probabilistic replica of the original se-
quence {W,}r_,. This construction is the spatial
equivalent of the renewal process which is well known in
probability theory [12,13].

The character of the renewal process critically depends
on the large-k form of the probabilities f). Introducing
the characteristic functions [11,23] for the sequence and

for the sequence of tails {g,}7 =1, &8 =>%=nSfi>

n=12,3,...

£O=3 £,0", go)= 3 g,0=01LL g
n=1 n=1

the large-k behavior of the distribution f is mirrored by
the properties of the function f(6) for 6—1—. For in-
stance, the mean length of the segments is
d =limy_,,_f'(0), the prime denoting the derivative. A
diverging derivative implies an important change of char-
acter for the renewal process: the mean number of seg-
ments which precede a given position, say k&, is then
asymptotically no longer proportional to k but increases

Wy= W, = W, W= W, W= W= W, = W, W,
— >t ——t}
0 1 2 3 4 50 6 7 8 9
< Se ; Sie
£ f, 4
FIG. 1. Arrangement of the transfer rates and of the seg-

ments in the directed random-random-walk model. Three seg-
ments are shown: the first segment comprises three variables,
the second segment two variables, the third segment four vari-
ables, etc. Within each segment, the random rates are equal to
one common random variable, distributed according to the den-
sity (6). For any two different segments, the transfer rates are
independent. The lengths of the succeeding segments are in-
dependent, identically distributed, integer-valued random vari-
ables with a prescribed distribution { £, }°-;.
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slower than k. This is clearly due to the possibility of en-
countering longer and longer segments [28].

Let us now return to the expression (5) for the mean
coordinate. Taking into account the division into seg-
ments as defined above, the terms =, (z) can be rewritten
into the following recursive scheme:

EO(Z)=gISI(Z,,U) ’
E(2)=F18,(z,n)E0(2) +8,8,(z,u) ,
E2)=f1S1(z,)E(2)+ f5S,(z,0)E(2) + g38;5(z,1) .

(19)

We now need to carry out the summation of all these
equations. Let us introduce

0 Wc
Fzu (D)= 3 f,Saw= [ “dW pl W)fl

n=1

z+Wl'
(20)

and a similar function G(z,u,{g,})=37-18,5,.(z,u).
Solving the algebraic equation for {x,(z)) and using the
connection (18) between the characteristic functions f (8)
and g(0), we arrive at the final general expression

1 Gzu,{f,])

z 1=F(z,m,{f,))

_(w) 1=Fzp+1,{f,})
22 1—Flw(f,)

(x,(z))=

(21

where (W )=W_u/(u+1). In the subsequent analysis,
we will calculate the function F(z,u,{f,}) for specific
distributions {f,}~;. Generally speaking, the small-z
expansion of F(z,u,{f,}) always starts with unity. This
follows from the small-z behavior of the functions S, (z,u)
as given by Egs. (16) and (17). As for the higher-order
terms, the small-z expansion of F(z,u,{f,}) will be cru-
cially sensitive to the detailed character of both proba-
bilistic aspects of the model, i.e., the small-W form of
p(W) and the large-n form of f,.

To close this section, let us now focus on an important
ingredient of the model, namely, on the nature of the ex-
isting correlations. Given an arbitrary random variable
W,, n =0, the variable W, ., with r >0 is correlated
with W, if and only if it belongs to the same segment.
When this is the case they have actually the same value
and their covariance equals to the variance of one of
them, that is, W2u/[(u+2)(u+1)?]. However, the event
“W, and W, ., belong to the same segment” occurs only
with a certain probability, say c,(r). On the whole, the
covariance (correlation function) within the system
{W, ]} -, reads

Wep

Wi Wy ir}= W,le,(r)=—""F""—"""-c¢,
cov{ wr}=var{W, jc,(r (,u.+2)(,u+1)2c

(r),

(22)

so that for a given u the correlations are governed solely
by the distribution {f,},=,. One should be aware that
the construction does not necessarily provide a stationary
chain of variables, i.e., ¢, (r) generally depends on the in-
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dex n. Nonetheless, we want to characterize the proper-
ties of motion in the asymptotic region in time and in
space. In any physically plausible case, the asymptotic
form of correlations is given by the behavior of ¢,(r) as a
function of the range r for high enough n. In this asymp-
totic region, the n dependence of c,(r) must be washed
out so that the process turns out to be asymptotically sta-
tionary. In other words, the physically relevant correla-
tions are related to the r dependence of the limit
¢ (r)=lim,_, ,c,(r). This quantity denotes the proba-
bility that a consecutive sequence of » bonds in the
space-asymptotic region is not interrupted by a segment
boundary, i.e.,

Ezozlnfn +r
2:=1nfn

The prefactors n in the sums appear because of n possible
ways of placing a sequence of r bonds on a segment of
length n +r and the denominator guarantees for the
proper normalization: ¢ (0)=1. Obviously, care has to
be taken if the first moment of the distribution {f,},=;
diverges. This case actually occurs in subsection IV C.
Here, the calculation proceeds along a more detailed pro-
cedure which makes use of the Tauberian theorem for the
ratio of the generating functions g(r,0)/g(6), where
g(r,0)=3>_.8,+,0" is the “shifted” characteristic func-
tion for the sequence of tails.

As for the global characterization of the range of
correlations, one usually calculates the long-range corre-
lations in the system { W,},°~,. In our formulation, they
are simply specified by the asymptotic form of the
coefficient ¢ , (7) as a function of the index 7.

Colr)= (23)

IV. SPECIFIC DISTRIBUTIONS OF LENGTHS
OF SEGMENTS

A. Geometric distribution

Suppose that for any neighboring random variables the
following assertion holds: with the probability b €[0,1]
the variables W, and W, ,; belong to different segments
(i.e., they are independent). This prerequisite implies a
geometrical distribution of the segment lengths. Actual-
ly, the probability that the first interruption of the run of
totally correlated variables will be just between W) _, and
W, is fy=ba* !, where a =1—b. The mean length of
the segments is d =1/b and the variance of the length
reads var=a /b%. Introducing an alternative parameter
a>0, a =exp(—a), the renewal process is described by
the only parameter a and the whole model by the pair u
and a. The characteristic function (18) reads
f(8)=b60/(1—ab). The function F(z,u,{f,}) in Eq.
(20) is equal to S;(Z,u), where Z=z/b. Eventually, the
Laplace transformation of the mean coordinate Eq. (21)
assumes the form

1 (w) 1=85,Zpt+1)

)= T s

(24)

The only difference with the noncorrelated result (9) con-
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sists in the scaling (x,(z))«>{(x,(Z))/b?% that is,
(x(1))<>{x()) /b. In other words, we do not find any
change of the dynamical exponents as compared to the
noncorrelated case (9). If u > 1, the asymptotics is exact-
ly the same, if u€]0,1[, the present result differs from
the noncorrelated one by the prefactor 1/7(b)=b*"1,
The prefactor diverges for b—0+, i.e., for diverging
mean length of the segments d =1/b. This is a prere-
quisite for the change of the asymptotic regime toward
that of the totally correlated case.

Le us specify the existing correlations. The probability
that any two random variables W, and W, ., belong to
the same segment is equal to c,(r)=exp(—ra) so that
¢, (r)=exp(—ra). Due to the independence of c,(r) on
n, we conclude that the process { W, ]} _ is exactly sta-
tionary from the very beginning (and not just asymptoti-
cally stationary).

Incidentally, let us emphasize that the basic presump-
tion of this subsection imposes the Markovian character
of the relations between the random variables { W, } .
Indeed, the information that the random variable W, be-
longs to a given segment with a specific length does not
influence the expectation that the variables W, and
W, +1 will be uncorrelated. This expectation is always
equal to a and it is, e.g., insensitive to the fact that W, al-
ready belongs to a very long segment. This lack of
memory is equivalent to the Markovian property, and the
system of variables { W}, -, constitutes a discrete-time
continuous-state Markov chain. A more formal con-
struction of the Markov chain [15] rests upon the one-
step conditional probability

p(W'sm +1; W,m)dW"
=Pr0b{ Wm+lE[W,’ W’+dW’]1Wm :W} .

(25)

For our construction, the conditional probability for the
sites n and n' > n reads

p(Wn";Wyn)=a" ""8(W —W')+(1—a” "")p(W') ,
(26)

where p(W) is the first-order density (6). Note that the
stationary distribution for the given Markov chain is
p(W).

B. Poisson distribution

In this subsection, we assume a shifted Poisson distri-
bution for the lengths of segments, that is,

k—1
fr=exp(—A)——

k=1’ f(B)=0exp[—AM1—0)] .

(27
|

(=3B X yin 10 ~ —Lexp=h)

1+A ! Vor  1+4+A

exp

A>0, k=1. The mean length of the segments is
d =1+ A and the variance of the length equals to var=A.
If A—>0+ we should recover the case of independent
variables. In the opposite limit A— o one has a greater
influence of the very long segments. Note that for any A,
all moments of the distribution {f}};°~; exist. The re-
sulting dynamics is described by the two positive parame-
ters 4 and A. Since in this model f is no longer a prod-
uct of step-by-step memoryless individual trials, the chain
is no more Markovian. The probability of having an in-
terruption on a given site depend on the length of the seg-
ment preceding this cut. One could check this property
by computing the higher-order joint probability densities
for the system { W, } 7 —o-

According to Eq. (21), we first need the function
F(z,u,{f,}), which is related to S;(z,u) by (20). We are
interested in the asymptotic behavior of {x(?)), i.e., in
the small-z expansion of the function F(z,u,{f,}). Since
all the moments of the shifted Poisson distribution are
finite, we can first use the small-z expansions of S; (z,u) as
given by Egs. (16) and (17), and then perform the summa-
tion in (20). Using this device both in the denominator
and in the numerator of Eq. (21), we arrive at the follow-
ing conclusions.

Once more one does not observe any change in the
dynamical exponents. If u=>1 we recover exactly the
same asymptotic behavior of {x (7)) with no change of
the prefactor. If u€ 10, 1[, there appears a new prefactor
1/7(u,A) in the right-hand side (r.h.s.), in the third for-
mula (9) where

Huny=P(—A) & AF Ttk +1)
T uA+D Z k! T(w)D(k +1)

- exp(—A)

A1 M(1+p, LA) . (28)

Here M(a,b;x) is the Kummer’s confluent hyper-
geometric function [27]. The prefactor goes to unity for
A—0+, recovering thus the noncorrelated situation. In
the opposite limit A— o, we use the asymptotics of the
confluent hypergeometric function [27] and we obtain
1/7(u,A)=~A"HPT(u) /. Thus the prefactor diverges for
diverging mean length of the segments d =1+ A exactly
in the same way as for the Markovian case above.
Again, this divergence mirrors the transition to the total-
ly correlated regime, that is the change of the asymptotic
behavior t#«>t. On the whole, the only difference with
respect to the Markovian case consists in the fact that the
prefactor depends on both parameters yu and A. Apart
from this, all the important features of the asymptotic be-
havior of the mean coordinate {x (7)) are identical.

As for the correlations within the system {W,}>_,,
one gets

—rln . (29)

)
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This formula gives the desired physically relevant corre-
lations in the space-asymptotic region and the long-range
correlations in this region. Due to the logarithmic
correction in the exponent, the correlations decrease
more rapidly than in the Markovian case. This con-
clusion is clearly a direct consequence of the quicker
damping of the probability for having long segments.
Eventually, let us check the correlations in the limit of
large mean length of the segments d =1+A, that is
A— . Coming back to the first expression in Eq. (29)
one obtains ¢, (r)=A/(1+A). Therefore, as expected on
physical grounds, the asymptotic correlations do not de-
pend on the distance (index 7) and the correlation
coefficient goes to unity.

C. Beta distribution

As stated above, the overall character of the process
{W,} =0 is radically modified when the first moment of
the distribution { f; } ©—, diverges. In order to investigate
the implications of this feature within our model, let us
analyze the distribution

(k) (o+1)

Se=oBlk o+ D=0"10 0 =)

o' l'(o)
k¢7+1

(a+1)

1+ +0(k™?)

(30)

where B(x,y) is the beta function [27] and the asymptotic
formula reveals the probability of having very long or-
dered segments. The first moment is finite only if o > 1.
The choice of this particular distribution is made to facil-
itate the calculations. The corresponding characteristic
function (18) reads

— ! o—1 Yy
flor=c [ dyy" =g s
ST % L1+ 2to; 9 (31)
0+ll 1—06 |’

where F(a,b,c;z) is the Gauss hypergeometric function
[27]. On the whole, the present detailed form of our
model is fully described by the couple of parameters p
and o.

The calculation proceeds as before except that one has
to make the summation before the small-z expansion.
Presently, we insert the above integral representation of

£ (8) into the last expression in Eq. (20) for F(z,u,o0) and
obtain:
_ . 1 ! -1
1 F(z,,u,a)—,uvfodxx" fodyy" Z +xy
0 Y)n
= —_—— 32
Bad 2 (n +y)(n +o)’ G2

with Z =z/W, and Y =1/Z. For |Y| <1, the series is
convergent. We need an equivalent asymptotic series in
1/Y (i.e., the small Z expansion). The most direct
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method for deriving such asymptotic representation is by
way of Mellin transforms [28], that is, by considering the
integral representation

_ _ ‘Y+lco y—e
1—F(zp,0)= asz_m

1 ™
(o—pu)w—0o) sin(om)’

(33)

Here we impose the condition 0 <y <min(1,u,0), and
we integrate along the contour which envelops the left
(negative) half plane anticlockwise, thus recovering the
expansion (33). Alternatively one can close the contour
clockwise in the positive half plane and one obtains
another expansion

1—F(z,u,o)

w_ T 1
sin(om) (0—o)o—p)

= ——”a 2 Resw:(t)n
n

(34)

The summation runs over all poles of the bracketed func-
tion and the residues can be calculated by usual complex
analysis (notice the possibility of double and triple poles).
For the illustrative purposes, we consider only the most
general case when the parameters 4 and o do not coin-
cide and when they are both different from a positive in-
teger. A short calculation based on (34) then establishes
the formula

&> =t <x(D> =t
. ST PR S
I n-o+l1 H
<x(t)> =t :
<> =t | X(O> = t
0 :
0 1

n

FIG. 2. Asymptotic behavior of the mean coordinate {x (7))
in the (u,0) plane as derived in subsection IV C. The parameter
1 describes the small-W behavior of the probability density for
the transfer rates (6). In the noncorrelated model, the anoma-
lous phase {x(Z))~T" exists for u<1. The parameter o
specifies the B distribution (30) for the segment lengths. For
o <1, the correlations between the transfer rates are not
damped to zero.
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Figure 2 presents the asymptotic behavior of (x(7)) in
the plane (u,0). Comparing these results with those of
the noncorrelated model Eq. (9) we observe that when the
mean length of segments does not diverge (o > 1), the
only modification is a prefactor. However, when the
mean length diverges the dynamical exponents are
modified and even a normal behavior {x(z)) =T may be
recovered.

Let us again investigate the nature of the underlying
correlations as a careful treatment of the ratio which has
been mentioned in connection with Eq. (23) yields the re-
sult

e (r)m UF(O')ra_l foro>1, r—owo (36)

1 foro<1l, r—ow.
For o > 1, the correlations tend to zero when r — o and
in this case no modification of the asymptotics of {x (7))
(except for the prefactor) is observed, even if the correla-
tion are not integrable (i.e., when 1 <o <2). On the other
hand when the correlations are not damped to zero
(o =1) the normal behavior {x (#)) =T is recovered only
when the disorder is small enough (i.e., u>0). Foru<o
one still observes an anomalous dynamical phase, but
“accelerated,” TH— TH+(179),

V. CONCLUSIONS

The present work has been aimed to analyze the
dynamical consequences of spatial correlations in a disor-
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small-z behavior thereof only depends on the mutual rela-
tion of the numbers u, o, and 1. In general, the presence
of the double or triple poles only brings about logarith-
mic corrections to the multiform terms Z* and Z°.

Having at hand the small-z expansion of the numerator
and the denominator in the formula (21), we again
proceed directly to the Tauberian asymptotic analysis of
the coordinate (x(¢)) itself. The complete summary of
the results is the following (T + W_t is again the
reduced-time variable):

9 foro<l, u<o.

[
dered medium. For the purpose of reviewing the essence
of our construction, it will be expedient to contrast it
against the classical model developed in [25]. These au-
thors have investigated the vibration frequency spectrum
of disordered lattices, assuming the presence of ordered
“islands” of light atoms separated by randomly distribut-
ed “walls” of rigid atoms with infinite mass.

First, in our construction, the segments are not ordered
in the above sense, their attribute being the equality of
transfer rates as random variables. Therefore, every seg-
ment is described by one random variable with a given
prescribed density. Second, the boundary between the
segments is not marked by a zero value of the transfer
rate but instead by the property of statistical indepen-
dence. Third, the boundaries between the segments are
distributed randomly according to a prescribed integer-
value distribution; the latter is not necessarily restricted
to the simple Bernoulli-trials distribution.

An alternative description of the interplay between the
local and the spatial (or “‘constitutional’’) disorder can be
traced in Ref. [22]. Here, the authors investigate
continuous-time random walk CTRW processes on frac-
tals. The local disorder is determined by the specific
form of the waiting-time distribution within the usual
form of the CTRW formalism [29,30]. This representa-
tion can be directly connected with our PME method,
which operators with the random transfer rates [31].
However, contrary to our segmentlike stochastical con-
struction, the spatial disorder in [22] rests on the topolog-
ical complexity of the substrate and it is depicted by the
fractal and spectral (fracton) dimensions of the underly-
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ing fractal structure. One observes a different role of the
parameters which describe the two types of the disorder
in the final dynamical predictions.

The most important results of the present work are as
follows (all of them should be understood as valid in the
space- and time-asymptotic region). When the correla-
tions decrease with the distance, whatever the detailed
type of damping, the dynamical exponents as observed in
the noncorrelated model are retained. The correlation
only shows itself by the presence of an additional prefac-
tor in the noncorrelated asymptotics. Moreover, the pre-
factor is only present in the region of the anomalous
dynamical phase of the noncorrelated model, i.e., for
p<1. The structure of the prefactor reflects the details
of the distribution of the segment lengths and the details
of the assumed probability density for the transfer rates.

The dynamical exponents can be modified only if the
correlations do not decrease to zero with distance. First,
this feature is present if there exists a nonzero probability
of having an infinitely long segment. Second, we have
detected the change of the dynamical exponents (as com-
pared to the noncorrelated model) in the case where the
reman length of the segments diverges. Here, the proba-
bility of having very long ordered segments decreases

slowly with the length of the segments. A direct conse-
quence of this effect is the absence of the damping of
correlations with the range and, second, the modification
of the dynamical exponents as detailed in subsection
IV C. The anomalous behavior is accelerated and even, if
the disorder is small enough, the normal behavior is
recovered. Finally, notice that in our construction, the
dynamical exponents are not changed if the correlations
decrease algebraically as » ~“~ Y, o > 1. This observation
applies also in the case of nonintegrated correlations, i.e.,
for o <2. This conclusion for the present directed ran-
dom walk is in contrast with a prediction based on a
renormalization-group analysis of a zero-bias model in

(4].
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